Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions.
نویسندگان
چکیده
Cyclic mechanical strain (1 Hz) causes a mitogenic response in neonatal rat vascular smooth muscle cells due to production and secretion of PDGF. In this study, the mechanism for sensing mechanical strain was investigated. Silicone elastomer strain plates were coated at varying densities with elastin, laminin, type I collagen, fibronectin, or vitronectin. Strain was applied by cyclic application of a vacuum under the dishes. Cells adhered, spread, and proliferated on each matrix protein, but the mitogenic response to strain was matrix dependent. Strain increased DNA synthesis in cells on collagen, fibronectin, or vitronectin, but not in cells on elastin or laminin. When strain was applied on matrices containing both laminin and vitronectin, the mitogenic response to strain depended upon the vitronectin content of the matrix. Fibronectin, in soluble form (0-50 micrograms/ml), and the integrin binding peptide GRGDTP (100 micrograms/ml) both blocked the mitogenic response to mechanical strain in cells grown on immobilized collagen. Neither soluble laminin nor the inactive peptide GRGESP blocked the response to strain. GRGDTP did not alter the mitogenic response to exogenous PDGF or alpha-thrombin but did prevent the secretion of PDGF in response to strain. Furthermore, GRGDTP, but not GRGESP, prevented strain-induced expression of a PDGF-A chain promoter 890 bp-chloramphenicol acetyltransferase construct that was transiently transfected into vascular smooth muscle cells. Finally, the response to strain was abrogated by antibodies to both beta 3 and alpha v beta 5 integrins but not by an antibody to beta 1 integrins. Thus interaction between integrins and specific matrix proteins is responsible for sensing mechanical strain in vascular smooth muscle cells.
منابع مشابه
Integrin-mediated mechanotransduction in renal vascular smooth muscle cells: activation of calcium sparks.
Integrins are transmembrane heterodimeric proteins that link extracellular matrix (ECM) to cytoskeleton and have been shown to function as mechanotransducers in nonmuscle cells. Synthetic integrin-binding peptide triggers Ca(2+) mobilization and contraction in vascular smooth muscle cells (VSMCs) of rat afferent arteriole, indicating that interactions between the ECM and integrins modulate vasc...
متن کاملIntegrin-Mediated Mechanotransduction in Vascular Smooth Muscle Cells
Blood vessels are continuously exposed to mechanical forces that lead to adaptive remodeling and atherosclerosis. Although there have been many studies characterizing the responses of vascular cells to mechanical stimuli, the precise mechanical characteristics of the forces applied to cells to elicit these responses are not clear. We designed a magnetic exposure system capable of producing a de...
متن کاملAn tV/^-like Integrin Receptor on Rat Aortic Smooth Muscle Cells Mediates Adhesion to Laminin and Collagen Types I and IV
Extracellular matrix receptors on vascular smooth muscle cells may enable the cells to migrate through both Interstitial and basement membrane matrices during vascular remodelling after Injury. Rat aortic smooth muscle cells attach to surfaces coated with f Ibronectln, laminin, and collagen types I and IV. Members of the ft family of integrin receptors appear to mediate attachment to these extr...
متن کاملIntegrin-mediated mechanotransduction in vascular smooth muscle cells: frequency and force response characteristics.
Blood vessels are continuously exposed to mechanical forces that lead to adaptive remodeling and atherosclerosis. Although there have been many studies characterizing the responses of vascular cells to mechanical stimuli, the precise mechanical characteristics of the forces applied to cells to elicit these responses are not clear. We designed a magnetic exposure system capable of producing a de...
متن کاملMechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells.
The effects of extracellular matrix proteins and mechanical strain on the mitogenic activity of angiotensins I and II (AI and AII) were examined in cultured rat vascular smooth muscle (VSM) cells. VSM cells on various extracellular matrices were exposed to AII (1 microM) for 48 h. On plastic, AII induced only a 1.6-fold increase in [3H]thymidine incorporation, but on fibronectin- or type I coll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 96 5 شماره
صفحات -
تاریخ انتشار 1995